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VELOCITY MEASUREMENTS IN A ONE-DIMENSIONAL STEADY FLOW

BY METHODS OF EMISSION TOMOGRAPHY

UDC 533.9+518.517.948+533.605A. V. Likhachev

A new method for velocity-field measurements in a one-dimensional steady flow is proposed. The
method is based on principles of laser-induced fluorescence combined with emission tomography. Re-
sults of a numerical experiment are presented.
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INTRODUCTION

The velocity field in a flow is usually measured by laser anemometers (see, e.g., [1–3]). These instruments
generate a probing interference field in the flow region under study. The measurement includes the formation of
an image or Fourier image of this field in diffuse light, its subsequent transformation into an electric signal, and
analysis. The problems of light scattering by particles moving with the flow were considered, in particular, in
[4, 5]. Algorithms of signal processing in laser anemometry are discussed in [6]. It should be noted that high-speed
photographing is sometimes used in diagnostic methods to determine consecutive positions of particles entrained
by the flow [7]. Some new results in the field of flow-velocity measurements can be found in [8].

The following experimental layout is described in [9]. A certain cross section is selected in the flow by a laser
sheet. A frequency-tuned laser is used, which allows one to achieve resonant absorption of radiation in the selected
layer by molecules (or radicals) of a certain type. Then, the Doppler shift of fluorescence caused by collective motion
of excited molecules in the flow is registered.

The method of velocity-field measurement in a one-dimensional steady flow, proposed in the present paper,
is similar to the above-described method of planar laser-induced fluorescence; as in [9], molecules in one cross section
are excited, but the fluorescence signal rather than the Doppler shift is further analyzed, because the former is much
simpler to measure. Under certain conditions, the velocity field is uniquely related to the spatial distribution of
excited molecules. In turn, this distribution can be found by measuring the integral intensity of fluorescence. The
method has been tested by a numerical experiment.

1. DERIVATION OF AN EQUATION RELATING
THE VELOCITY OF A ONE-DIMENSIONAL GAS FLOW
WITH THE CONCENTRATION OF EXCITED MOLECULES

Let the velocity of an examined steady flow (for certainty, a gas flow is considered) have only one component
vz ≡ v(x, y, z) (the subscript is omitted later on). The following method is proposed to determine the field v(x, y, z).
Let the molecules in the beginning of the flow section considered (z = 0) in a thin layer dz be converted to an
excited state during a negligibly small time by some agent (e.g., laser sheet). We assume this moment to be the
initial time. Let n0 be the concentration of excited molecules at the initial time. We consider a small volume ∆V
located in a vicinity of the point (x0, y0, 0) at t = 0. At later times, this volume moves along a streamline parallel,
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by condition, to the z axis. We assume that the diffusion velocity of molecules is much lower than the velocity
of their collective motion in the flow and the flow velocity, in turn, is much lower than the velocity of sound, i.e.,
the gas can be considered as incompressible. Under these assumptions, the number of excited molecules in the
volume ∆V in the course of its motion is mainly reduced due to relaxation of the molecules to the ground state. If
the gas is sufficiently rarefied, the main mechanism of relaxation is spontaneous radiation. Then, we can write the
relation

N(x0, y0, z) = n0∆V exp (−αt), (1)

where α is a constant characterizing the relaxation velocity of the molecules to the ground state. The time t in
Eq. (1) can be expressed via the current coordinate of the volume ∆V and flow velocity. The latter, due to flow
steadiness, depends on the position of the point on the streamline only:

t =

z∫
0

dz′

v(x0, y0, z′)
. (2)

Substituting (2) into (1) and using some simple transformations, we obtain
z∫

0

dz′

v(x0, y0, z′)
=

1
α

ln
n0∆V

N(x0, y0, z)
. (3)

Passing in (3) to the limit ∆V → 0, we have, in the logarithm expression, the ratio of the concentration of the
excited molecules at the initial time in the plane z = 0 to their concentration n(x0, y0, z) at the point (x0, y0, z) at
the time determined by Eq. (2). Differentiating Eq. (3) with respect to z, we obtain

v(x0, y0, z) = −2αn(x0, y0, z)
(∂n(x0, y0, z)

∂z

)−1

. (4)

Expression (4) describes the velocity of one-dimensional motion of the gas on the streamline x ≡ x0, y ≡ y0.

2. DETERMINATION OF THE CONCENTRATION
OF EXCITED MOLECULES BY THE TOMOGRAPHY METHOD

Knowing the concentration of excited molecules n(x, y, z), Eq. (4) yields the flow velocity at every point.
Generally speaking, the concentration n(x, y, z) in Eq. (4) is taken at different times for different z coordinates.
Under the assumption adopted, however, excitation is performed in a thin layer, which is assumed to be a plane.
In accordance with the flow model considered, this plane is further divided into individual sectors, each of them
moving with its own velocity along the streamlines (Fig. 1). Therefore, radiation at each point occurs at one time
only. This allows us to ignore the time dependence in Eq. (4) and seek the concentration n(x, y, z) as a purely
spatial distribution, though it is dynamic in reality.

The problem of determining n(x, y, z) can be solved by methods of computerized tomography. Transition of
molecules to the ground state gives rise to fluorescence whose intensity is proportional to molecular concentration.
The measurement scheme is shown in Fig. 2. Several two-dimensional detectors registering mainly radiation incident
perpendicular to their surface are located parallel to the flow centerline at different azimuthal angles. The length
of the detectors is assumed to be sufficient to obtain data within the entire volume under study. As the sectors of
the surface initially belonging to the plane z = 0 move, the detectors register the “traces” of these sectors, whose
brightness in the downstream direction decreases with decreasing number of excited molecules.

We assume that the processes of radiation absorption and scattering can be neglected. Within the framework
of the above assumptions, the signal registered at a certain point of the detector inclined at an angle ϕ to the x axis
can be represented by the equation

f(p, z) = k

S2∫
S1

n(s cosϕ+ p sinϕ, s sinϕ+ p cosϕ, z) ds. (5)

Here p is the coordinate on the detector in the direction perpendicular to the z axis, S1 and S2 are intersection
points of the beam along which observation is performed with flow boundaries, and k is a coefficient depending
on particular test conditions. The distribution of signal intensity on the detector surface f(p, z) is called a two-
dimensional projection.
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Fig. 1 Fig. 2

Fig. 1. Distribution of excited molecules immediately after excitation (a) and at some subsequent moment (b).

Fig. 2. Measurement scheme: 1) envelope of the front of motion of excited molecules in the flow; 2) two-dimensional
detector; 3) signal registered by the detector.

Equations similar to (5) form the basis for emission tomography of self-luminous objects [9, 10]. Let there be
projection data f obtained by measurements. The relation between f and the distribution examined [in our case,
the distribution of the concentration of excited molecules n(x, y, z)] is described by a known integral operator. In
the beam-tomography approximation considered, this operator is specified by Eq. (5), i.e., the signal at each point
of the detector is put into correspondence to the integral of n(x, y, z) along a certain straight line. The problem of
tomography is to find the unknown function n(x, y, z) using the data f . Many algorithms have been developed to
solve this problem (see, e.g., [11–13]).

Tomographic reconstruction requires a rather large number of measurements. If the data are united into
two-dimensional projections, the latter should be registered at several angles with respect to the object. In practice,
the measurement scheme is often subjected to constraints, including that on the number of observation directions.
The reason can be complexity of equipment or insufficient availability of the object (for instance, a flow inside a
tube). If the amount of known data is insufficient, the unknown function is usually reconstructed using algebraic
methods [11]. As a result of discretization, the sought vector n ∈ RJ turns out to be related to the measurement
vector f ∈ RI by a system of linear algebraic equations An = f . In the beam-tomography approximation, the
matrix element aij is often defined as the length of intersection of the ith beam with the jth voxel. (Voxels are
elementary volumes into which the reconstruction domain is divided during discretization.) Therefore, the matrix A
is rather sparse. There are special iterative algorithms to solve systems of linear algebraic equations of this kind.
In our computational experiment, we used the algebraic reconstruction technique (ART). According to [11], the
(k + 1)th step in ART is defined by the formula

n(k+1) = n(k) + λ
fi(k) − (ai(k),n(k))

‖ai(k)‖
ai(k). (6)

Here ai(k) is the ith row of the matrix A, λ is the relaxation parameter, i(k) = k(mod I) + 1, i.e., the matrix rows
are handled in a cyclic manner, ( · , · ) indicates a scalar product, and ‖ · ‖ is the Euclidean norm in RJ . It was
shown [11] that process (6) converges for all initial approximations n(0) ∈ RJ if 0 < λ < 2. If, in addition, the
approximation n(0) belongs to the linear shell of the vectors a(i), i = 1, . . . , I, then the iterations converge to the
solution of the system of equations with a minimum norm for a compatible system and to the generalized solution
for an incompatible system.

Thus, using the proposed experimental technique involving emission tomography, one can reconstruct the
dynamic distribution of the concentration of excited molecules from the measured values of integral fluorescence.
At the same time, knowing this distribution, one can calculate the velocity field of the one-dimensional steady flow
under study using formula (4).

223



Fig. 3. Cross section of the velocity field by the plane z = 0.2: exact model (a) and results of reconstruction (b–d);
(b) α = 0.5, the number of projections K = 5, and ∆ = 0.176; (c) α = 0.5, K = 15, and ∆ = 0.091; (d) α = 0.5,
K = 6, random noise in projection data ξ = 6%, and ∆ = 0.272.

3. NUMERICAL EXPERIMENT

3.1. Description of Models. The method developed was tested in a numerical experiment. The following
velocity distribution v(x, y, z) was initially set:

v(x, y, z) =
v0√
z + z0

(
1− (x−Xc)2

a2
− (y − Yc)2

b2

)
,

(x−Xc)2

a2
+

(y − Yc)2

b2
6 1, z > 0. (7)

In computations, we used conventional units based on which the parameters in Eq. (7) had the following values:
v0 = 1, z0 = 2, a = 0.25, b = 0.7, Xc = −0.2, and Yc = 0.1. The cross section of the velocity field by the plane
z = 0.2 is shown in Fig. 3a. Since the objective of the computational experiment was testing the method efficiency,
the possibility of actual realization of the velocity field (7) was not considered. Nevertheless, formula (7) describes
the main features of motion of a viscous gas in a vertical tube with an elliptic cross section in a gravity field.

Based on the prescribed velocity distribution, we calculated the concentration of excited molecules at different
points of the flow. For this purpose, the expression for time (2) was substituted into Eq. (1) using dependence (7).
As a result, we obtain the expression
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n(x, y, z) = n0 exp
(
− 2αz2

v0(
√
z + z0 −

√
z0 )

(
1− (x−Xc)2

a2
− (y − Yc)2

b2

)−1)
,

(x−Xc)2/a2 + (y − Yc)2/b2 6 1, z > 0.
(8)

Then, we calculated the projection data (5); the distribution of the concentration of excited molecules corresponded
to Eq. (8). The coefficients k and n0 were assumed to be equal to unity. Thus, detector readings were simu-
lated. Based on these data, the distribution n(x, y, z) was simulated using the ART algorithm (6). Then, the
dependence n(x, y, z) was substituted into Eq. (4) used to calculate the velocity field.

Distributions (7) and (8) were calculated on a grid with 129 × 129 × 129 nodes, specified in a cube with
the center at the origin and the edge length equal to two conventional units. Reconstruction was performed on the
same grid. On two-dimensional projections (detectors), a grid 129 × 129 was defined, with integral (5) calculated
for each node.

The velocity field reconstructed by the above-described technique was compared to the model velocity field
determined by Eq. (7). The normalized root-mean-square error ∆ was calculated by the formula

∆ =

√√√√ J∑
j=1

(vj − vrj )2
/√√√√ J∑

j=1

(vj)2, (9)

where v and vr are the model and reconstructed velocity fields, respectively; summation is performed over grid
nodes in the three-dimensional space. The accuracy of tomographic reconstruction of the concentration of excited
molecules was also characterized by the error ∆ determined similar to (9).

3.2. Effect of the Parameter α on the Magnitude of the Reconstruction Error. The length of the
flow sector in which the velocity field can be calculated depends on the residence time of molecules in the excited
state, which is characterized by the parameter α. Under conditions of a real experiment, it is difficult to vary this
parameter, because it is determined by the type of the fluorescent substance. Therefore, we have to estimate the
length L of the sector where the velocity can be reconstructed with sufficient accuracy for a given α. The estimate
L ∼ U/α is very rough. The effect of α is studied in the numerical experiment.

On one hand, the distribution n(x, y, z) depends on α, which can affect the accuracy of solving the tomo-
graphic problem based on the projection data (5); on the other hand, α enters into Eq. (4), where the velocity is
expressed via the concentration of excited molecules. The contributions of these effects to the root-mean-square
error were considered separately and together. For convenience, in the present series of computations, we fixed the
value of L (because it is determined by the model size) and varied the value of α.

Curves 1 and 2 in Fig. 4 show the effect of the parameter α on the error ∆ in calculating v(x, y, z) from
Eq. (4). The distribution n(x, y, z) is not reconstructed on the basis of the projection data (5) but is calculated
directly using Eq. (8). In other words, curves 1 and 2 show the accuracy of solving Eq. (3) using formula (4).
The derivative in Eq. (4) was taken numerically, since the analytical expression for n(x, y, z), generally speaking,
is unknown in real experiments. Numerical determination of the derivative is an ill-posed problem. Therefore, in
the case of distortion of the function n(x, y, z) by random noise (see below), it was smoothed by a one-dimensional
median filter with respect to the variable z. The difference between curve 1 and curve 2 is that 3% noise was
superimposed on the array n(x, y, z) in constructing curve 2. It follows from Fig. 4 that noise significantly decreases
the accuracy of velocity-field reconstruction, especially at large values of α.

Curve 3 in Fig. 4 refers to the complete solution of the problem. Using Eq. (8), we calculated the con-
centration of excited molecules n(x, y, z) for a given value of the parameter α. According to (5), we determined
six projections at angles ϕ = 0, 30, 60, 90, 120, and 150◦. Based on these data, tomographic reconstruction was
performed using algorithm (6); the result of this reconstruction was substituted into formula (4). The computations
show that the accuracy of tomographic reconstruction of the function n(x, y, z) from ideal (i.e., not distorted by
random noise) projection data decreases only insignificantly with increasing α. Thus, in our case, the decrease
in the accuracy of velocity-field reconstruction with increasing α is mainly caused by the low accuracy of solving
Eq. (3).

3.3. Dependence of the Error on the Number of Two-Dimensional Projections. In the general
case, the accuracy of tomographic reconstruction depends on the amount of projection data (in the formulation
considered, on the number of two-dimensional projections K). Hence, the error in velocity-field reconstruction also
depends on the number of observation directions.
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Fig. 4 Fig. 5

Fig. 4. Error ∆ versus the parameter α: curve 1 shown the solution of Eq. (3) with the use of Eqs. (4) and (8);
curve 2 shows the same solution for ξ = 3%; curve 3 shows the complete solution of the problem with the use of six
projections.

Fig. 5. Error ∆ versus the number of projections K for α = 0.5: curve 1 shows the error of reconstructing the
distribution n(x, y, z); curve 2 shows the error of reconstructing the velocity field, based on the reconstructed func-
tion n(x, y, z).

Figure 5 shows the dependences of ∆ on the number of projections K. The projections were distributed
uniformly over the angle ϕ in the interval from 0 to 180◦. The computations were performed for α = 0.5. Curve 1
shows the dependence of the error of tomographic reconstruction of the distribution n(x, y, z) on the number of
projections K, which was obtained using algorithm (6). Curve 2 shows the error of velocity-field reconstruction,
by means of Eq. (4), from reconstructed distributions of excited molecules. It is seen that the accuracy of solving
the problem increases insignificantly for K > 9. The reason is the effect of saturation in terms of the number of
observation directions, typical of algebraic methods of tomographic reconstruction (including the ART algorithm).

The accuracy of velocity-field reconstruction for different numbers of observation directions can be qualita-
tively estimated using Fig. 3b and c, which shows the cross sections by the plane z = 0.2.

3.4. Random Noise in Projection Data. As is noted in Sec. 3.2, distortions in the distribu-
tion n(x, y, z) significantly worsen the accuracy of velocity-field reconstruction. In the formulation considered,
the function n(x, y, z) is distorted by artefacts of tomographic reconstruction caused, in particular, by the small
number of projections and by random noise always present in projection data in practice. The effect of noise is
considered below in more detail.

The noise was assumed to have a Gaussian distribution with the mean equal to zero. The ratio ξ of noise
dispersion to the maximum value of the signal for each projection was constant. In the case of noisy data, regular-
ization procedures were used in solving the problem. For tomographic reconstruction of the distribution of excited
molecules n(x, y, z), the ART algorithm included a smoothing adaptive frequency filter [12]. In reconstructing the
velocity field by Eq. (4), the function n(x, y, z) was smoothed by a one-dimensional median filter with respect to
the variable z. Depending on noise intensity, the filter length was varied from three to nine points.

Figure 6 shows the dependences ∆(ξ). Note the difference between curves 2 in Figs. 4 and 6. In the first
case, the function n(x, y, z) calculated by Eq. (8) was distorted. In the second case, the noise was applied onto
the projection data (5) used to reconstruct the dependence n(x, y, z). It follows from Fig. 6 that the tomographic
reconstruction of the distribution n(x, y, z) and the reconstructed velocity field v(x, y, z) are rather stable to noise
within the range examined if regularization procedures are used.

Figure 3d shows the cross section of the velocity field reconstructed from noisy initial data by the plane
z = 0.2.

CONCLUSIONS

The proposed method for determining the velocity field of a one-dimensional steady flow is rather simple in
experimental implementation because it does not require complicated spectroscopic and interference measurements.
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Fig. 6. Error ∆ versus the noise level ξ for α = 0.5 and K = 6 (notation the same as in Fig. 5.)

The advantage of the method is also the possibility of determining the velocity over the entire length of the sector
examined. The numerical experiment revealed rather high accuracy of velocity-distribution reconstruction. If the
lifetime of molecules in the excited state is rather large, the root-mean-square error is less than 20% for five or six
observation directions.

The drawback of the method is that it can be applied in the above-described form to a limited class of flows
only. In prospects, however, the range of applicability of the method can be extended, in particular, to unsteady
flows. The distribution of excited molecules will still be found by solving the emission-tomography problem, but
the relation between this distribution and velocity field will be determined by an equation more complicated than
Eq. (4).

The author is grateful to V. V. Pickalov for discussion of the work and valuable comments.
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